Self-Adaptive Penalties for GA-based Optimization

نویسنده

  • Carlos A. Coello
چکیده

This paper introduces the notion of using coevolution to adapt the penalty factors of a fitness function incorporated in a genetic algorithm for numerical optimization. The proposed approach produces solutions even better than those previously reported in the literature for other (GA-based and mathematical programming) techniques that have been particularly fine-tuned using a normally lengthy trial and error process to solve a certain problem or set of problems. The present technique is also easy to implement and suitable for parallelization, which is a necessary further step to improve its current performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slope Stability Analysis Using a Self-Adaptive Genetic Algorithm

This paper introduces a methodology for soil slope stability analysis based on optimization, limit equilibrium principles and method of slices. In this study, the slope stability analysis problem is transformed into a constrained nonlinear optimization problem. To solve that, a Self-Adaptive Genetic Algorithm (GA) is utilized. In this study, the slope stability safety factors are the objective ...

متن کامل

A FAST GA-BASED METHOD FOR SOLVING TRUSS OPTIMIZATION PROBLEMS

Due to the complex structural issues and increasing number of design variables, a rather fast optimization algorithm to lead to a global swift convergence history without multiple attempts may be of major concern. Genetic Algorithm (GA) includes random numerical technique that is inspired by nature and is used to solve optimization problems. In this study, a novel GA method based on self-a...

متن کامل

Design of A Self-Tuning Adaptive Power System Stabilizer

Power system stabilizers (PSSs) must be capable of providing appropriate stabilization signals over abroad range of operating conditions and disturbances. The main idea of this paper is changing aclassic PSS (CPSS) to an adaptive PSS using genetic algorithm. This new genetic algorithm based onadaptive PSS (GAPSS) improves power system damping, considerably. The controller design issue isformula...

متن کامل

RELIABILITY-BASED DESIGN OPTIMIZATION OF COMPLEX FUNCTIONS USING SELF-ADAPTIVE PARTICLE SWARM OPTIMIZATION METHOD

A Reliability-Based Design Optimization (RBDO) framework is presented that accounts for stochastic variations in structural parameters and operating conditions. The reliability index calculation is itself an iterative process, potentially employing an optimization technique to find the shortest distance from the origin to the limit-state boundary in a standard normal space. Monte Carlo simulati...

متن کامل

Adaptive Rule-Base Influence Function Mechanism for Cultural Algorithm

This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999